
Guidelines for successful Assignments 2 & 3 submissions

Below are some very basic practices to adhere to in your code:

1. No magic number – if you need one, make it a constant.

2. Avoid code duplication – in the last homework students came up with very specific

methods (e.g., getVelocityEastBound, getVelocityWestBound), hopefully to promote

abstraction. This is a good goal; the problem was that these methods replicated the same

code with only tiny changes. Please promote both abstraction and code reuse.

3. Provide specific assumptions (in Javadoc) regarding your method functionality. It is

recommended to check the preconditions at the beginning of ANY non-private

method.

4. To promote encapsulation and abstraction, create your own exceptions (preferably

extend RuntimeException)

5. Any major type (class) should have an interface.

6. Include ONLY necessary operations for your client in your API.

7. Any helper methods should be NON-public.

8. Prefer setting your compile-time type as interface (e.g., List and not ArrayList, Map

and not HashMap).

9. When using existing APIs – read documentation and understand it. You might be

asked to explain it.

10. When getting warnings from IntelliJ and/or Maven – understand them and try to

resolve. You might be asked to explain it.

11. Test as you code – do NOT wait till you created 20 classes with 20 methods.

12. Come up with diverse tests - code coverage test verifies which lines are executed while

testing. Thus, if you have some rare conditions that you check in your code, you should

come up with appropriate tests.

13. Come up with UML/Class diagrams of your design. You can analyze dependencies

between your modules and these will be handy, when presenting your design.

14. Tell a story in your programming (pick up meaningful names, throw meaningful

messages and provide comprehensive Javadoc)

15. Keep this story simple – KISS principle (e.g., do not create inheritance relationships,

unless they promote code reuse) https://en.wikipedia.org/wiki/KISS_principle

16. Keep you code clean and maintainable with 10-50-500 Rule – avoid Monolithic Code,

Spaghetti Code

10: No package can have more than 10 classes.

50: No method can have more than 50 lines of code.

500: No class can have more than 500 lines of code.

17. SOLID Class Design Principles - SOLID is an acronym for design principles coined by

Robert Martin (http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29):

Design Principle Description

Single responsibility

principle

A class should have one and only one task/responsibility.

More than one task per class, it leads to confusion.

https://en.wikipedia.org/wiki/KISS_principle
http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29

Open/closed principle Focus more on extending the software entities rather than

modifying them.

Liskov substitution principle It should be possible to substitute the derived class with base

class (will be covered in the next lecture)

Interface segregation

principle

Like Single Responsibility Principle, but applicable to

interfaces: each interface should be responsible for a

specific task. Do not include unnecessary methods.

Dependency inversion

principle

Depend upon Abstractions - but not on concretions. This

means that each module should be separated from other

using an abstract layer which binds them together (do

NOT create strong dependencies between classes – if you

need such you need a 3d party class).

 Please analyze your assignment with respect to the above principles. If you violate any

 of the three highlighted in BOLD principles above, you would like to reconsider your

 design.

18. Usage of Design Patterns (starting from Assignment 4 an on…) – design patterns will

be covered in the upcoming two lectures.

**

19. Be self-critical – leave your assignment aside for a couple of hours, afterwards try to

explain to yourself what you did. Does it make sense?

20. Practice presenting your design in 6-7 minutes. Rest will be devoted to questions.

21. Document ideas:

Always include the following in your writeup: explain the requirements you

implemented, briefly explain your design (you may want to include a UML diagram) and

testing (especially corner cases), mention assumptions properly.

GOOD LUCK

